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Abstract

This paper studies systemic risk in a global network with over 2,000
exchange-traded banks and insurance companies. Network
construction follows a methodology comprising three parts: (1) using
the default correlation model of Duan and Miao (2016) to produce a
forward-looking probability of default (PD) total correlation matrix and
then transform it into a partial correlation matrix by applying the
CONCORD algorithm; (2) measuring financial institutions’ systemic
importance based on six network centrality indicators derived from
the partial correlation matrix with or without factoring in asset sizes of
financial institutions so as to capture both too-connected-to-fail and
too-big-to-fail; and (3) relying on a graphical analysis of the global
financial network which can then be partitioned into overlapping
firm/group centric local communities. We specifically study the
financial institutions’ systemic importance in 2008 and 2015. Using the
2015 sample, we are able to compare the systemic importance
rankings under alternative measures, including the G-SIBs and G-SllIs
identified by the Financial Stability Board (FSB) in 2016. Our results
suggest the FSB rankings tilt toward singling out large institutions as
systemic, with connectivity playing a minor role.
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1. Introduction

The recurrence of financial crises entails large costs directly associated with disruptions in the financial
system and huge impacts indirectly on the real economy, as evidenced by the global financial crisis of
2008 and onward. That financial crisis has naturally focused both academic and policy work on the
identification of systemic risk in the global financial system.

A variety of systemic risk measures emphasizing connectedness between banks and other financial
firms have been proposed in the literature. Examples include the equity returns volatility (Demirer et
al., 2015), capital shortfall of an individual institution in the crisis (Acharya et al., 2012), CoVar (Adrian
and Brunnermeier, 2016), and insurance premium against a firm’s financial distress (Huang et al.,
2009). The construction of these measures relies more or less on equity returns, which only imply the
credit risk indirectly. In addition, these measures are backward-looking in nature and thus can only be
of limited use when it comes to predicting the future. In this paper, we contribute to the literature by
relying on a directly relevant and forward-looking measure of credit risk — the probability of default
(PD). PD captures a firm’s likelihood of not fulfilling its financial obligations over some future horizon.
It focuses directly on the realization of a rare event of significance, which may through default
correlations trigger cascading institution failures and cause widespread distress throughout the
financial system.

Measuring the connectedness between financial institutions is a crucial step in constructing a proper
financial network. Connectedness is, not surprisingly, one among several criteria that the Basel
Committee on Banking Supervision considers in assessing the global systemic importance of a bank
(BCBS, 2013). Connectedness between financial jurisdictions has also played a role in determining
whether countries should undergo a mandatory financial sector assessment by the IMF on a recurring
basis (Demekas et al., 2013).

Correlation, which captures the tendency of two parties moving together, or their linear dependence,
is commonly used to serve this purpose (e.g. Tumminello et al., 2010). Although intuitive, the
correlation contains both direct and indirect impacts from the rest of the system. It naturally
confounds the measurement of the direct connection between any two parties, which we believe a
good network ought to reflect. To disentangle the direct connection between financial institutions in
terms of their future default likelihoods, we contend that partial correlations are more appropriate, a
view advanced first by Kenett et al. (2010).

Most of the work on financial networks, which we will review in more detail in the next section, relies
on the historical co-movements and/or correlations of stock returns or other market-based risk
measures. In contrast, we choose to construct a dynamic, ever-evolving and forward-looking default
correlation network. We choose not to use historical correlations of PDs, despite the fact that they
are easy to calculate from the time series of PDs available from databases such as the Credit Research
Initiative (CRI) at the National University of Singapore, Moody’s Analytics, Kamakura, or Bloomberg.
Historical correlations would represent the connectedness between firms for a fixed horizon, say, one
month, averaged over a long time span. This averaged measure of co-movement is unlikely to
adequately reflect connectedness going forward. Much like forward-looking volatilities, which are
informative beyond the sample standard deviation computable from the past data, correlations
among PDs are expected to be dynamic in response to the state of economy or more specifically the
phase of a credit cycle.

Instead, we use the default correlation model of Duan and Miao (2016) to generate a set of forward-
looking PDs for a specific horizon of interest, which reflects the current market conditions while also
capturing the eventuality that some firms may cease to be publicly traded or disappear for reasons



other than default. Our forward-looking PDs are constructed for over 2,000 banks and insurers in the
CRI database. We use them to obtain the regularized forward-looking partial correlation matrix, which
allows for isolating the direct dependence between two financial institutions. This matrix serves as the
basis for building our global financial network.

Regularization is required for two reasons. The first reason is technical, as the estimation of high
dimensional partial correlation matrices can be unstable in the absence of regularization. The second
reason has an economic underpinning: without regularization, the partial correlation matrix would be
relatively dense, which would tend to bunch all in one big global component, with all firms being
systemically important. By imposing a regularization condition, a substantial number of edges may
drop from the network, but we ensure that there are no totally disconnected firms, i.e. “orphans.”
This “regularized” network, therefore, is consistent with the intuition of a globally connected financial
system with only a certain number of systemically important firms.

Besides the use of forward-looking PDs, another novel feature of our analysis is that edges, which
capture the strength of the connection between firms, are not only weighted by the magnitudes of
partial correlations but also by firm characteristics, i.e. their share in the network’s total assets. While
node characteristics have been used before in Demekas et al. (2013), the resulting network was
reduced to an unweighted network after the removal of edges with low weights. In contrast, we
calculate several centrality measures using the weighted network, and the analysis of the measures
help us determine the systemic rankings of financial institutions.

For comparison purposes, we also construct partial correlation networks with historical PDs and stock
returns, respectively, for the same sample of firms. There are substantial differences between the
systemic risk rankings obtained from historical, backward-looking correlations and those obtained
using the forward-looking partial correlations. These differences persist whether the edges are
weighted or not by the size of the firms, suggesting that our approach based on forward-looking
correlations is materially different. More importantly, the overlap between the set of global
systemically important banks identified by the Financial Stability Board (FSB) and the forward-looking
PD-based systemic risk ranking is substantial only when edges are weighted by size. We argue, hence,
that the FSB ranking is severely tilted towards singling out large institutions, and connectivity only
plays a minor role.

Before offering a detailed explanation of the methodology and a discussion of the results, the review
of the related literature next serves to frame and put into context the contribution of this paper.

2. Related Literature

A recent strand of the literature has focused on the dimensions of systemic risk and related costs
associated with the possibility of multiple failures among banks. For instance, Acharya et al. (2012)
measure the cost of a financial crisis by assessing potential capital shortfalls driven by large equity
price declines relative to required regulatory capital ratios. While it is not necessarily the case, large
capital shortfalls are likely to occur simultaneously since there is dependence between the equity price
movements of individual firms and the overall market (Brownlees and Engle, 2017). In contrast, Duan
and Zhang (2013) use asset-liability dynamics with several common risk factors to measure the
systemic exposure and systemic fragility arising from cascading defaults, which correspond to the
expected losses and pervasiveness of defaults under a stress scenario similar to that in Brownlees and
Engle (2017).



Rather than relying on dependence through common risk factors, other measures look at pairwise
dependence on the movement of equity prices in distress periods, i.e. CoVaR (Adrian and
Brunnermeier, 2016), or risk measures such as credit default swap (CDS) spreads, i.e. CoRisk (IMF,
2009; Chan-Lau, 2013, Chapter 6). In these approaches, quantile regressions can capture the
dependence between two firms after correcting for the effect of common drivers of risk, such as
cyclical indicators or volatility indices. Results by Patro et al. (2013) show that simple risk indicators
based on daily stock return pair-wise correlations seem to capture well changes in systemic risk in the
U.S. financial system.

While pairwise dependence measures can serve to construct a financial network by connecting two
firms with an edge weighted by the dependence measure, the edges may still be capturing
dependence effects from a source beyond the two firms, i.e., common dependence with a third firm
or a set of other firms. From a network perspective, hence, it may be better to construct the network
following a global rather than a pairwise approach. Furthermore, the pairwise approach could be
subject to some estimation issues. For instance, a correlation matrix constructed using pairwise
correlations based on time series observations of unequal length may not yield a legitimate correlation
matrix.

Mantegna (1999) is an earlier example of a global approach for constructing financial networks. In this
network, nodes (i.e., firms) are connected by edges weighted by the correlation of their equity returns.
Tumminello et al. (2010) expand on this work, by constructing hierarchical trees, correlation based
trees and networks from stock return correlation matrices.

In a similar vein, Billio et al. (2012) use monthly stock returns for financial institutions, including hedge
funds, broker/dealers, banks, and insurers, to construct a Granger causality network, where edges
between firms run in the direction of non-linear Granger causality. Billio et al. (2013) use credit
spreads-based Granger causality networks to analyze interconnectedness between financial
institutions and sovereign countries. Since there are common drivers of equity returns as suggested
by the empirical evidence from factor pricing models (Ferson, 2003, among others), as well as of credit
spreads, measures based on plain correlations or Granger causality may be misleading when it comes
to quantifying dependence among firms.?

To a certain extent, using stock return residuals after correcting for common factors or principal
components could remove the effects of other firms on the dependence between two firms. But the
choice of common factors or number of principal components is non-trivial. Spatial-dependence
methods, developed in the panel vector autoregression literature, could be applied to remove strong
common factors.? Craig and Saldias (2016), building on work by Bailey et al. (2015b), adopt this
approach to construct a banking network using stock returns, approximating the common factors with
principal components.

Another alternative is to use partial correlation analysis, as in the analysis of stock returns networks
by Kenett et al. (2010). Their results highlight substantial differences between standard correlation
networks and the corresponding partial correlation ones. More recently, Barigozzi and Brownlees
(2016) also use partial correlations to construct financial networks, building on the vector
autoregressive model introduced by Diebold and Yilmaz (2014).

Moving beyond stock return correlations, Demirer et al. (2015) propose that a directed edge
corresponds to a firm’s stock returns’ contribution to the generalized forecast error variance
decomposition of the other firm’s stock returns, where the decomposition is obtained as suggested

! See Chudik et al. (2011) and Bailey et al. (2015a).
2 See the survey by Canova and Ciccarelli (2013).



by Koop et al. (1996), and Pesaran and Shin (1998). Results by Lanne and Nyberg (2016), however,
suggest that these measures may not be comparable across time since, in contrast to the forecast
variance decomposition in a structural vector autoregressive model, the sum of the proportions of the
impact accounted for the innovations may not sum to unity.

A common feature shared by the different approaches presented in this section is that the price-based
measures used, either based on stock returns or credit spreads, are backward-looking in the sense
that they only capture co-movements of past observed data. As highlighted in the introduction, they
may fail to capture dynamics associated with an evolving economic environment. The next section
explains how to construct forward-looking PDs, allowing us to overcome the backward-looking
problem faced by earlier studies.

3. Methodology

Our approach comprises three parts: (1) constructing a forward-looking probability of default (PD)
partial correlation matrix for banks and insurers under consideration, (2) utilizing the partial
correlation matrix to devise measures for ranking these financial institutions in terms of their systemic
importance, and (3) building a financial community centered at an institution or a group of institutions
so that different communities of interest may naturally overlap.

For the first part, we adopt the default correlation model of Duan and Miao (2016) to produce via
simulation a forward-looking PD total correlation matrix for any future horizon of interest in a time-
consistent manner. The total correlation matrix is then used to obtain the corresponding partial
correlation matrix by applying the CONCORD (CONvex CORrelation selection methoD) algorithm of
Khare, et al. (2015). We choose to rely on partial PD correlations, because they are ideal for
disentangling the pure and direct default risk linkages among institutions as opposed to reflecting the
indirect influence via third parties.

With the forward-looking PD partial correlation matrix in place, we then focus on the two remaining
components of our methodology. To measure systemic importance of an institution in the network,
we rely on the concept of network centrality where the nodes and edges are defined by the forward-
looking PD partial correlation matrix. Six measures of network centrality are used, of which four are
standard and based on network edge characteristics, and two are novel. The two new centrality
measures introduced here utilize the eigenvector centrality concept by explicitly incorporating the size
of institutions, i.e., combining edge and node characteristics.? For example, a large bank, say, HSBC,
may be connected with many smaller financial institutions. A simple size-weighted measure would
make these connections less important. The edge-node combined eigenvalue centrality would,
however, make those connected smaller institutions systemically more important due to their
connection to HSBC, which in turn also increases the systemic relevance of HSBC via feedback.

The last component of our methodology is to devise an institution/group-centric financial community.
Instead of partitioning institutions into non-overlapping communities, a group-centric community is
more appealing. A member institution may not have any partial correlation with others within the
defining group, but it is nevertheless a member of the community by definition. This kind of group-

3 Demekas et al. (2013), in their financial jurisdictions network, weigh edges using node characteristics such as
the PPP-GDP of the jurisdiction and the share in the global derivatives market of the banks headquartered there.
The weights in their analysis are used to prune edges with values below a certain threshold instead of
fundamentally altering systemic importance as in ours. These authors also use the clique percolation method
(Palla et al. 2005) for identifying communities which, in contrast to the group-centric community proposed by
us, requires that at least a subset of the banks in the community are fully connected to each other.



centric community can be straightforwardly obtained, be it a global banking community which
contains all banks but not insurers, or, say, a New York-centered financial community where all New
York-based banks and insurers as well as their respective connected parties are included. The focal
group can also be narrowed down to just one institution; for example, forming a Banco Santander-
centered financial community. Naturally, different overlapping communities will emerge to reflect
interest in different focal groups.

3.1 Constructing the forward-looking PD partial correlation matrix

We adopt the default correlation model of Duan and Miao (2016) to generate the forward-looking PD
total correlation matrix, which is then used to deduce its corresponding partial correlation matrix. The
Duan and Miao (2016) model specifies a factor model for one-month PD and probability of other exits
(POE) of individual firms in the universe of exchange-traded corporates, with the factors being some
predetermined credit cycle indices constructed from the same universe of corporates. As reported in
Duan et al. (2012), POEs are many times larger than PDs for typical US firms. Thus, the survival
probability of a firm is largely determined by POE rather than PD. Naturally, POE is critical to default
modeling, because the survival probability is always a key determinant of any multiple-month PD. The
Duan and Miao (2016) model also handles missing data, which naturally occur as a result of defaults
and other corporate exits.

Duan and Miao (2016) employ 11 pairs of predetermined common factors consisting of (1) the pair of
global median PD and POE based on a pool of exchange-traded corporates that have PDs and POEs for
at least 60 months over the sample period, and (2) 10 pairs of industry median PD and POE based on
the Bloomberg Industry Classification System. In this study, we employ one more pair of economy-
specific median PD and POE, because they substantially improve the performance of the factor model.
In short, we deploy 12 pairs of predetermined common factors.

The PDs and POEs of these firms are taken from the Credit Research Initiative (CRI) database, a public-
good undertaking at the Risk Management Institute (RMI) of the National University of Singapore
(NUS). The CRI produces and publishes daily updated term structures of PDs, using the forward-
intensity corporate default prediction model of Duan et al. (2012), for exchange-traded corporates
globally. As of March 2018, the CRI provides PDs, with horizons ranging from 1 month to 5 years, on
over 67,000 firms in 128 economies.* Among them, over 34,000 corporates are currently active with
daily updated PD and POE values. The PD and POE time series in some cases date back to 1990. We
use this CRI database for the analyses.

The factors (pairwise with one for PD and the other for POE) are the logit-transformed values®, i.e.,
lnﬁwhere X is either PD or POE. The pair of logit-transformed global factors are standardized by

subtracting their respective sample mean and then dividing by their respective sample standard
deviation. The standardized common factors are dynamically evolving and modeled by a bivariate
vector autoregressive process with their means set to zero. For the pair of the economy-specific

4 For implementation details on the CRI-PDs, please refer to the “NUS-RMI Credit Research Initiative Technical
Report, 2017, update 1” and subsequent addenda.

> We use the logit function to transform PDs and POEs, differing from that of Duan and Miao (2016) where a
double-log transformation was deployed. We adopt this modification for two reasons. First, PDs and POEs are
naturally bounded between 0 and 1, the logit transform leading to a more natural Gaussian approximation.
Second, simulation quality is essential to the numerical accuracy of our high-dimensional default correlation
model. This transformation enables a substantial improvement in simulation quality without increasing
computational costs because the empirical martingale simulation technique of Duan and Simonato (1998) can
be applied, which in our case utilizes the closed-form solution for E {%} when ln% is modeled as a Gaussian

random variable.



factors and each of the 10 industry factor pairs, we linearly project them onto the global factor pair
and take the pair of standardized residuals as the economy/industry factor pair. ® Each
economy/industry factor pair is again modeled as a bivariate vector autoregressive process with their
means set to zero. The individual firm PDs and POEs are also subjected to the same logit
transformation before regressing them on the factors.” The factor model residuals are also individually
autoregressive, and their individual time series model residuals are allowed to form locally correlated
clusters. Thus, default correlations could arise globally and/or locally. The factor model is estimated
with an adaptive Lasso regression of Zou (2006) to deal with noisy parameter estimates due to many
regressors, or, alternatively speaking, too few observations.® We also follow Duan and Miao (2016) to
recalibrate the parameters governing each factor model residual time series using the 5-year PD term
structure available at the time of constructing the forward-looking default correlation matrix.° This
recalibration step ensures that the prevailing market condition gets reflected in our forward-looking
default correlations but not at the expense of poorly matching the available PD term structure
individually.

This factor model with sparsely correlated residuals enables us to generate PDs for any target horizon,
say, one year, at any future time point, say, one month later, for any subset of firms in the CRIl universe.
Note that the one-year PD for a firm prevailing one month later is a random variable and can therefore
be correlated with the one-year PD of another firm at the same time. It is this kind of PD correlations
that we intend to capture. Operationally, one can simulate forward by one month the 12 factor pairs
along with individual PD and POE residuals of a target group of financial institutions. This initial
simulation yields the random starting point for a second set of simulations. After advancing forward
one month, one can think of one-year PDs at the time, for which the second set of simulations kick in.
Simulate further M paths over 12 months for the factor pairs and individual PD and POE residuals. For
each of the M paths, deduce the corresponding one-year PD using the standard survival-default
formula, and finally average over the M paths to compute the Monte Carlo estimate of the one-year
PD one month later. We repeat the procedure for every firm in the target group to generate one set
of random one-year PDs one month later.

Repeat the two-step simulation process N times to generate N sets of one-year PDs for the target
group of financial institutions. One is then in a position to estimate the correlation matrix using these
N sets of one-year PDs over the one-month horizon. In the implementation later, we set M=1000 and
N=1000. It is fairly clear that ensuring reasonable simulation quality at this level of M and N is critical
to the successful implementation of Duan and Miao’s (2016) default correlation model. Our
experiment suggests that adopting the empirical martingale simulation technique of Duan and
Simonato (1998) mentioned in an earlier footnote gives rise to satisfactory simulation quality. It is
worth mentioning that increasing M and N can yield the correlation matrix to any desired level of
numerical accuracy, but the sampling error intrinsic to the use of actual data to estimate the Duan and

& We differ from Duan and Miao (2016) in the construction of 10 pairs of industry factors where they sequentially
orthogonalized industry pairs; for example, the first pair of industry is the residuals after projecting onto the pair
of global factors, whereas the second pair of industry factors is obtained by projecting onto the pair of global
factors and the first pair of industry factors.

7 Here, individual firm PDs are regressed on the PD factors, and individual firm POEs are regressed on the POE
factors.

& Duan and Miao (2016) deploy the SCAD regression of Fan (1997).

% Differing from the implementation in Duan and Miao (2016) is our use of the 5-year PD term structure in
recalibration as opposed to their use of two-year PD term structure. Our implementation simulates longer time
series and thus requires the use of the empirical martingale simulation technique of Duan and Simonato (1998)
to efficiently dampen Monte Carlo errors, which was discussed in an earlier footnote. As compared to Duan and
Miao (2016), we also recalibrate for every financial institution its factor loadings via a single firm-specific scaling
factor to adjust all factor loadings up and down in addition to recalibrating the parameters of its residual AR(1)
model.



Miao (2016) default correlation model cannot be eliminated by increasing simulation accuracy. Note
that this correlation matrix can also be interpreted as the change in, say, one-year PDs over, say, one
month, because N one-year PDs for a firm all originate from the same one-year PD one month earlier.

Our next task is to convert the forward-looking PD total correlation matrix into a partial correlation
matrix. By definition, partial correlation is the residual correlation after subtracting any indirect impact
from other parties in the system. In principle, it can be obtained from linear regressions. The problem
with this approach is that the resulting partial correlation matrix will likely be dense with many entries
close to zero. These minuscule entries tend to disguise the more meaningful and important
relationships that we are after.

To make the partial correlation matrix more sparse and meaningful, a Lasso-type penalty is typically
utilized to trim the partial correlation matrix, which in essence imposes zero partial correlations on
pairs that have weak ties. We apply the CONCORD algorithm introduced in Khare et al. (2015) and Oh
et al. (2014), which uses a proximal gradient method to solve an objective function with a purposely
designed penalty matrix. The CONCORD algorithm guarantees convergence since it preserves
convexity through an appropriate selection of weights and the design of a penalty term based on the
concentration matrix, i.e., the inverse of the correlation matrix, rather than on the partial correlation
matrix. This is not the case with other penalty-based methods for generating sparse partial
correlations, for example, the SPACE (Sparse PArtial Correlation Estimation) method of Peng et al.
(2009).

Following equation (4) of Oh et al. (2014), we set equation (1) as our minimization target with the
CONCORD objective function as:

Qeon (@) = 2 [~In[det(3)] + tr(SyQ2) + A | y I4] (1)

where det(¢) and tr(¢) denote the determinant and trace operators, respectively; Sy is the sample
correlation matrix computed with a sample size of N; and where the inverse of the correlation matrix,
Q, can be split as Q = Qp + Qy, where Qp and Qy, denote respectively the diagonal and off-
diagonal elements of Q. The L;-penalty term is 1 | Qy Il;= A%, |w;;|, where w;; is the off-
diagonal element in Qy and the tuning parameter 1 (1 > 0) determines the shrinkage rate, or how
aggressively one penalizes the non-zero entries in y . Cross-validation by dividing the data sample
into randomized training and validating datasets is the usual way to determine the optimal shrinkage
rate. However, we choose to select A such that it is just slightly below the value at which an orphan
institution, i.e., totally isolated institution in the network, begins to emerge.’® Economic intuition
justifies using this selection criterion because in reality, all institutions in the financial system should
be connected with some other ones.

After obtaining the optimal Q, one can compute the partial correlation matrix P whose (i,j) element
wij
its diagonal elements are set to 0 since there is no interest in analyzing the effects of an institution on
itself. We use Py in the later implementation, which is a moving average of 12 monthly estimated Py.

Averaging is to remove excessive noises in individual Py surfacing from time to time.

equals — . For the discussion of centrality measures next, let us set Py equal to P except that

3.2 Ranking systemically important financial institutions via different network centrality measures

10 We set the tolerance error for finding the optimal A at 1072 and the partial correlation precision at 107%.
These tolerance and precision levels are set as a compromise between computing time and accuracy. The results
are insensitive to further tightening of their levels.



A natural outcome of studying the linkages in a financial network is to determine the relative
importance of each financial institution, which could help policy makers rationalize different risk
management measures/actions. The linkages in our analysis are described by the forward-looking PD
partial correlation matrix. An institution’s systemic importance is its centrality in the network.
Different centrality measures typically reflect different kinds of systemic importance, and no single
measure can be expected to serve all purposes well. Here, we utilize four standard centrality measures:
degree centrality, connection-strength centrality, eigenvector centrality, and connection-strength
eigenvector centrality. For a network with n institutions, we define the adjacency matrix A as the n x
n matrix whose elements are set to 0 or 1 depending on whether their corresponding elements in Py
equal 0 or not.

The degree centrality of institution i is defined as the i-th row sum of A, whereas the connection-
strength centrality is the i-th row sum of |Py|, the absolute value of Py, divided by the total number
of institutions in the network. The later normalization makes possible comparing results across
networks comprising different number of institutions. The eigenvector centrality is based on the
eigenvector of A that corresponds to the largest eigenvalue. Since A is a non-negative matrix, the
Perron-Frobenius theorem implies that this eigenvector can be made to have all non-negative
elements, with the i-th element representing the centrality of the i-th institution. Similarly, the
connection-strength eigenvector centrality is the eigenvector associated with |Py|. The eigenvector
centrality measures a node’s importance by factoring in the extent to which its connected nodes are
further connected. In short, it measures impacts in a network globally, and has been widely applied to
rank the importance of individual nodes in networks.

The four centrality measures discussed thus far are all based on the number and values of edges to
and from a node as opposed to the node’s characteristics beyond connections, for example, the
relative size of a financial institution. Moreover, node’s characteristics may also affect the node’s
number and nature of its connections. For instance, a large, well-capitalized bank may be better able
to provide interbank loans to a large number of counterparties. We thus devise two novel edge-node
combined centrality measures. First, let q; be the size of a financial institution (total assets measured
in USD) over the total size (total assets) of the financial network, and Q be a diagonal matrix with g;
as its i-th diagonal element. The two new measures are, respectively, the non-negative eigenvector
(corresponding to the largest eigenvalue) of the size-adjusted adjacency matrix, QAQ and that of the
size-adjusted partial correlation matrix, Q|Px|Q. Under these new centrality measures, a smaller
institution by connecting to a large institution will become relatively more important, which in turn
feeds back to increase the large institution’s systemic importance through the eigenvector solution.
We favor the two new centrality measures because they go beyond the complexity of linkages (i.e.,
edge characteristics). Since there is little question about firm size (i.e., a node characteristic beyond
connections) being critical to systemic importance, the two new centrality measures seem more
suitable for financial networks.

3.3 Determining the institution/group-centric financial community

Communities within a network can be constructed as either overlapping or non-overlapping ones,
using quite different techniques. To create non-overlapping communities is to partition the nodes into
several disjoint sets with methods such as spectral bisection (Fiedler, 1973, and Pothen et al., 1990),
benefit function optimization (Kernighan and Lin, 1970), hierarchical clustering (Scott, 2000), and edge
removal (Girvan and Newman, 2002). For our purposes, however, hard partitioning institutions into
non-overlapping communities is not appealing, because forcing a financial institution to just belong to
one community is inconsistent with the common notion of financial communities.



An alternative is to create overlapping communities, for which several methods are available; for
example, clique percolation of Palla et al. (2005) and its variants.!* The clique percolation method to
create overlapping communities relies on first forming cliques based on edges and then putting
connected cliques into a community. Thus, it is also not ideal for our purpose; for example, a banking
community centered in New York City and connected by credit risk linkages should naturally include
all New York-based banks along with some banks belonging to, say, the London-centered community.
In short, focal groups (i.e., individual institutions, financial centers, and countries) are more natural
communities from a user’s perspective, and different financial communities centered at different focal
groups should be allowed to overlap.

We use the network analysis tool, Gephie, to graphically present financial communities. In the network,
each node represents a financial institution, and the node size is determined by its total asset. Each
edge linking two nodes represents a non-zero partial correlation between the two institutions’
forward-looking PDs. The thickness of the edge represents the connection strength, and the color of
the edge reveals a positive (red) or negative (blue) connection. We use the software’s built-in
algorithm ForceAtlas2 to set the graphical configuration. ForceAtlas2 is a force-directed algorithm.
Under this algorithm, the attraction and repulsion forces between the nodes move them around and
eventually to a balanced state. Essentially, this algorithm turns proximities in a network into visual
communities with denser connections (Jacomy et al. 2014). As per our partial correlation construction
method, there will not be any genuine orphan or unconnected financial institutions in the overall
financial network, but within some communities, certain financial institutions may be orphans.

4. Global Financial Network, SIFls, Financial Communities, and the 2008
Financial Crisis

This section illustrates the use of our methodology for assessing the systemic importance of financial
institutions. First, we evaluate how the six network centrality measures compare to each other;
second, we analyze their performance vis-a-vis the rankings by the Financial Stability Board (FSB),
which currently supports the regulatory reform proposals for systemic banks and insurers; and third,
we analyze the performance outcome in August 2008, in the eve of the global financial crisis.

The sample includes financial institutions, which according to the Bloomberg Industry Classification
System (BICS) are commercial banks (BICS 10008-20051), investment banks and brokerage firms (BICS
10008-20054-159) and insurance companies (BICS 10008-20055). *? Forward-looking PDs are
calculated using a five-year rolling data window so that the estimated factor loadings can vary over
time. This will presumably capture the potentially variable dependencies of the PDs on the general
credit market conditions. A firm is included in the sample if its shares were actively traded at the time
the forward-looking PD is calculated. Depending on the number of observations an institution has in
the five-year rolling data window, sector-level PDs (i.e. bank or insurer) may be used as proxies for the

11 See Xie et al. (2013) for a recent survey of overlapping community detection methods.

12 The analysis also includes a number of financial holding companies in Taiwan and Korea. Although classified
as ‘diversified financial services’ (BICS 10008-20054-176), these firms actually perform services and functions
similar to ‘banks’. Leaving them out of the analysis would make the banking sectors of the two economies less
representative. We exclude five exchange-listed central banks: Schweizerische Nationalbank, Banque Nationale
de Belgique, Bank of Greece, South African Reserve Bank, and Bank of Japan, due to their special nature. Among
them, the first three are currently active with daily updated CRI PDs. South African Reserve Bank was traded on
Johannesburg Stock Exchange until its delisting on May 29, 2002. Bank of Japan was originally listed on JASDAQ,
but later switched to Tokyo Stock Exchange on July 16, 2013. However, the CRI database does not include Bank
of Japan due to incomplete financial data provided by Bloomberg.
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dependent variable in the factor loading estimation.!® This way, a financial institution will have a
ranking as soon as it has an observation in a five-year history. For the factors’ own time series dynamics,
we use an expanding-data window (i.e., all data up to the prediction time) in estimation, because the
factor dynamics need longer time series to estimate with reasonable precision.

In the analysis that follows, the forward-looking PDs are for the one-year prediction horizon, and the
PD correlation matrix is calculated for the one-year PDs one month ahead of the prediction time. We
conduct the analysis for two time points, August 2008 and December 2015. The choice of the first time
point is rather obvious, as it is right before the bankruptcy of Lehman Brothers, which set off a global
financial crisis. The second point corresponds to the economic environment prevalent when the crisis
largely subsided. The number of financial institutions in the August 2008 and December 2015 samples
are quite similar, 2,075 and 2,029 respectively.

Table 1. Rank correlations among the six network centrality measures and the firm asset size

Panel 1. Spearman correlations in August 2008
Connection Weighted
Connection . Weighted Connection Firm Asset
Degree Eigenvector Strength . .
Strength . Eigenvector Strength Size
Eigenvector .
Eigenvector
Degree 1 0.41 0.99 0.48 0.19 0.27 0.02
Connection Strength 0.41 1 0.46 0.91 0.23 0.24 0.20
Eigenvector 0.99 0.46 1 0.55 0.20 0.28 0.03
Connection Strength |, ;g 0.91 055 1 0.27 0.28 0.23
Eigenvector
Weighted 0.19 0.23 0.20 0.27 1 0.91 0.90
Eigenvector
Weighted
Connection Strength 0.27 0.24 0.28 0.28 0.91 1 0.73
Eigenvector
Firm Asset Size 0.02 0.20 0.03 0.23 0.90 0.73 1
Panel 2. Spearman correlations in December 2015
Connection Weighted
Connection . Weighted Connection Firm Asset
Degree Eigenvector Strength . B
Strength . Eigenvector Strength Size
Eigenvector .
Eigenvector
Degree 1 0.46 0.99 0.54 -0.05 0.01 -0.15
Connection Strength 0.46 1 0.49 0.93 0.10 0.13 0.07
Eigenvector 0.99 0.49 1 0.58 -0.05 0.00 -0.15
Connection Strength |, 5 0.93 0.58 1 0.09 0.11 0.05
Eigenvector
Weighted -0.05 0.10 -0.05 0.09 1 0.88 0.95
Eigenvector
Weighted
Connection Strength 0.01 0.13 0.00 0.11 0.88 1 0.81
Eigenvector
Firm Asset Size -0.15 0.07 -0.15 0.05 0.95 0.81 1

Source: CRI (National University of Singapore) and authors’ calculations.

13 Specifically, if a financial institution has at least 24 monthly observations in the five-year rolling window, its
firm-level PD is used in the factor model estimation. If the number of observations is below 24, we do two
regressions and set the factor loadings to be the weighted average of the two sets of parameters. The first
regression is the same as the one described above. The second regression uses the sector-level PD as the proxy
dependent variable.
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The partial correlation matrices Py computed for both August 2008 and December 2015 exhibit
substantial sparsity, as zero entries account for about 87 percent of all entries in both dates. Not
surprisingly, one can expect this result because, first, only direct connections are measured, and
second, CONCORD, a penalty-based method, shrinks partial correlations toward zero. Recall that our
partial correlation matrix construction increases sparsity up to the point that an orphan financial
institution begins to emerge. Any higher sparsity would result in some institution(s) to be totally
isolated from the global financial network in terms of credit risk, a hardly sensible outcome.
Remember that the Py in our analysis is a moving average of Py spanning over 12 months. It is denser
than Py because a non-zero partial correlation between any two parties in the previous 12 monthly
estimated Py would result in a non-zero entry in Py.

4.1 Comparing the six network centrality measures

As section 2 noted, different centrality measures capture the relative importance of each financial
institution in the network from different angles. To show the relations among these measures, Table
1 presents the rank correlations among the six centrality measures and the asset size for both the
August 2008 and December 2015 samples. The degree centrality, which measures the number of
connected parties a financial institution has, is highly correlated with the eigenvector centrality, as the
latter factors in both connectedness and the extent to which its connected parties are further
connected. The same thing applies to the connection strength and connection strength eigenvector
centrality due to the same reason. As expected, the asset size is considerably correlated with the two
size-weighted centrality measures.

In the following sections, we will present the financial institutions’ ordinal rankings under various
centrality measures. Here, however, we would like to display a few patterns of the numerical scores
underlying those rankings. For the two size-weighted centrality measures, which in principle capture
a more comprehensive picture of the institutions’ systemic risks, we observe that a big proportion of
the total scores are distributed among about 200 financial institutions, or 10% of the sample.
Specifically, for the size-weighted eigenvector centrality, 93% of the total scores in 2008 and 90% of
the total scores in 2015 are distributed among the top-ranked 200 financial institutions. Similarly, for
the size-weighted connection strength eigenvector centrality, 99% of the total scores are absorbed by
10% of the samples in both months.

Figure 1. Distribution of the size-weighted eigenvector centrality scores

Distribution af Weiglhed Eigenvectar Scors Among the Top-ranked 200 firms, August 2008 i ol Waigthed Ei Heare Amang the T ked 200 fierms, Decombar 2015

of Welgthed Strength Score Amang the Top-ranked 200 firms, August 2008 of Weigthed Strangth Scors Amenyg the Top-anked 200 firms, December 2015
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Figure 1 shows the distribution of the two size-weighted scores among the top-ranked 200 financial
institutions in August 2008 and December 2015, respectively. Among those institutions, a handful
have much distinguishably higher scores than others. When the connection strength is factored in,
particularly in 2008 as can be seen in the bottom left figure, the scores for the two top-ranked
institutions, in this case Barclays and Royal Bank of Scotland, are way higher than those for the rest of
the sample. The data reveals that these two British banks are strongly connected with each other.
They also have strong connections with some of the biggest and best connected financial institutions,
examples including Citigroup and Credit Agricole.

4.2 The FSB G-SIBs, G-SlIs vs. network centrality based-rankings as of December 2015

In the aftermath of the global financial crisis, the FSB proposed a ranking system based on several
criteria to identify Global Systemically Important Banks (G-SIBs) and Global Systemically Important
Insurers (G-SllIs). Their purpose is to better monitor these financial institutions’ activities and to
enhance buffers so as to reduce the risks of experiencing another financial crisis. The FSB released a
list of systemic banks and a list of systemic insurers in November 2016 based on their systemic
importance metrics with data up to end 2015.%* Each of the G-SIBs or G-SlIs in the lists is/will be
required by the FSB to meet extra loss absorbency requirement, although the phase-in periods for
banks and insurers may differ, in order to better withstand financial distress in the future.’

We assess the rankings of the 2016 G-SIBs based on the FSB recommendations for loss absorbency
requirements against the six network centrality measures obtained from our corresponding December
2015 partial default correlation network. For a better comparison, we present in Table 2 the systemic
rankings of the G-SIBs amongst the 1,479 banks in the 2015 data sample. That said, those rankings are
computed from the global financial network, because banks are connected to insurers naturally, but
are rescaled to the banking subsector. Similarly, we present in Table 3 the systemic rankings for the
2016 G-SlIs amongst the 550 insurers globally.®

According to the first two network measures (columns 3 and 4 in Table 2, columns 2 and 3 in Table 3),
i.e., degree and connection strength, Prudential PLC has relative large number of immediate
counterparties, Standard Chartered is connected with its immediate counterparties strongly, and Bank
of China appears to be both. In contrast, most of the other G-SIBs and G-Slls have very few
counterparties and weak ties. Accounting for the “true” network effects (columns 5 and 6 in Table 2,
columns 4 and 5 in Table 3) boosts some institutions’ rankings, Royal Bank of Scotland for instance,
because their immediate counterparties are better/more strongly connected with others. The
opposite effect causes some institutions to move down the list.

The most interesting phenomenon in Table 2 and 3 is that most of the G-SIBs/G-SlIs rank toward the
top of list under the size-weighted eigenvector centrality (column 7 in Table 2, column 6 in Table 3)
and size-weighted connection strength eigenvector centrality (column 8 in Table and column 7 in Table
3). That said, the firm size (both institution’s own and its counterparties’), i.e., the node characteristic
in our network, plays an important role in determining a financial institution’s systemic importance.
Neglecting it would sometimes yield counterintuitive results. For a better comparison, we also present

14 please refer to “2016 list of global systemically important banks (G-SIBs)” and “2016 list of global systemically
important insurers (G-SlIs)”.

15 For a detailed discussion on the G-SIBs and G-Slls methodologies, please refer to “The G-SIBs assessment
methodology-score calculation,” and “Global Systemically Important Insurers: Updated Assessment
Methodology”.

16 Without a definite loss absorbency requirement for the G-Slls, we are not yet able to compare the systemic
risk ranking from the G-SIl methodology with ours.
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Table 2. FSB systemic importance rankings for the 2016 G-SIBs (with data up to December 2015)

Weigh
FSB Loss . Connection . el t'ed
Connection . Weighted Connection . .
Bank Name Absorbency Degree Eigenvector Strength X Firm Size
R Strength . Eigenvector Strength
Requirement Eigenvector .
Eigenvector
Citigroup Inc 2.50% 1178 1258 1264 1295 5 9 12
JPMorgan Chase 2.50% 835 892 874 1050 3 5 6
& Co
Bank of America 2.00% 920 1043 990 1013 1 7 9
Corp
BNP Paribas SA 2.00% 774 704 794 806 12 2 8
De“tsi\hee Bank 2.00% 736 1137 719 854 4 6 11
HSBC Holdi
S CPLOCd'”gS 2.00% 878 450 955 524 44 172 5
Barclays PLC 1.50% 570 794 610 605 82 194 10
Credit Suisse 1.50% 774 395 665 383 19 12 26
Group AG
Goldman Sachs 1.50% 801 1028 1063 1225 18 39 25
Group Inc
Industrial &
Commercial o
B 1.50% 786 596 675 689 13 74 1
Ltd
Mitsubishi UFJ
Financial Group 1.50% 1157 618 1149 427 15 50 7
Inc
Wells Fargo & Co 1.50% 1240 1024 1236 976 7 17 13
Agricultural Bank o
i Log 1.00% 847 989 815 928 10 48 3
Bank ftdeh'”a 1.00% 13 13 11 14 9 62 4
Bank of New
York Mellon 1.00% 1204 1105 1258 1249 36 18 57
Corp
China
Construction 1.00% 1102 1082 1102 978 2 8 2
Bank Corp
Groupe BPCE* 1.00% 693 148 698 221 28 4 46
Cred't:Ag”“"e 1.00% 727 1108 829 1140 8 3 14
ING Groep NV 1.00% 904 1352 925 1259 17 13 24
Mizuho Financial 1.00% 973 1130 869 841 14 28 15
Group Inc
Morgan Stanley 1.00% 1261 1433 1332 1396 21 44 28
Nordea Bank AB 1.00% 263 279 285 228 30 98 35
Royal Bank of
Scotland Group 1.00% 151 507 130 374 22 45 19
PLC
Banco Ssa:ta"der 1.00% 1145 634 1080 445 27 46 18
i |
S°°'etesie”era € 1.00% 549 1095 776 1152 6 1 17
Standard o
Chartores BLC 1.00% 289 33 282 36 25 52 38
State Street Corp 1.00% 1240 555 1193 692 324 842 83
Sumitomo Mitsui
Financial Group 1.00% 1049 860 1030 742 29 36 16
Inc
UBS Group AG 1.00% 1310 304 1218 378 108 29 22
UniCredit SpA 1.00% 1190 1182 1119 929 24 27 23
Rank correlations with FSB -0.15 -0.15 -0.15 0.15 0.38 0.25 0.47
(30 banks)
Rank correlations with SRISK
(439 banke)* 0.01 -0.02 0.03 0.06 0.52 0.41 0.54

Source: CRI (National University of Singapore) and authors’ calculations.
* Groupe BPCE is not a listed bank. We use Natixis SA, the major listed entity in this banking group, to proxy for its systemic ranking.
**The SRISK data are taken from the V-Lab website on January 17, 2018. The data points are from December of each year.
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in the last columns of both tables the rankings based on the institutions’ total assets. As we can see,
they can be highly correlated with the size-weighted rankings (too-big-to-fail), but are not the same,
re-enforcing the importance of the connectedness and network effects (too-connected-to-fail)
reflected in our methodology.

Many financial institutions not on the FSB list are actually considered systemically risky according to
our methodology. Bank of Communications, the 5" largest listed bank in China and 21 in the world
as of December 2015, ranks the 10" among all banks globally under the size-weighted connection
strength eigenvector centrality. Apart from its own large asset size, it is strongly connected with some
of the highest ranked banks under the same measure such as Deutsche Bank (6%).

The riskiest insurer under the size-weighted connection strength eigenvector centrality on our 2015
list is CNP Assurances. Being a major French insurer, it is connected to many large and well-connected
financial institutions in the region and abroad, examples including Credit Agricole, Societe Generale,
BNP Paribas, SCOR, and Bank of America.

The bottom of Table 2 presents the Spearman rank correlations between the six network centrality
measures, firm size and two other systemic importance indicators. The methodology is as follows: for
the 2016 G-SIBs (30 banks in total), we give them rankings from 1 onward to 30, allowing for ties when
some fall into the same loss absorbency ratio bucket. Under each of our proposed centrality measures,
we give 1-30 to the highest ranked banks and 31 to the rest. We subsequently take the banks that are
common in both lists and compute the Spearman rank correlation with the two sets of rankings.
Similarly, we compute the rank correlation between our measures and the SRISK, which we extract
from the Systemic Risk Analysis of World Financials by the V-Lab of the Volatility Institute at the New
York University Stern School of Business.’

Table 3. FSB systemic importance rankings for the 2016 G-SliIs (with data up to December 2015)

. Weighted
. Connection . .
Connection . Weighted Connection . .
Insurer Name Degree Eigenvector Strength X Firm Size
Strength . Eigenvector Strength
Eigenvector .
Eigenvector

Aegon NV 197 135 213 148 14 26 13

Allianz SE 91 142 125 105 7 5 2
American

International Group 392 427 403 414 6 14 12

Inc

Aviva PLC 136 268 115 214 4 6 7

AXA SA 272 231 277 286 19 57 1

MetLife Inc 427 363 465 409 2 4 3

Ping An Insurance
Group Co of China 349 277 341 233 3 8 5
Ltd
Prudent|IanIcF|nanC|aI 263 226 449 329 1 1 4
Prudential PLC 52 146 53 114 17 7 8

Source: CRI (National University of Singapore) and authors’ calculations.

The Spearman coefficients indicate that the FSB methodology does not seem to account much for the
number and strength of inter-bank connections. It seems to be biased toward singling out large

17 The SRISK measure of a firm is set equal to its expected capital shortfall in a crisis scenario characterized by a
40 percent decline in the broad market index. The measure is used to rank the systemic risk of global financial
firms, with the rank updated on a weekly frequency. Details are available at http://vlab.stern.nyu.edu/en/.
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institutions as evidenced by the correlation coefficient of 0.47 between the G-SIB and bank size
rankings. For comparison, the rank correlation between the size-weighted connection strength
eigenvector centrality and the bank size for the 30 G-SIBs is 0.07.

The rank correlation coefficients between the six centrality measures and the SRISK are generally
modest too. This phenomenon reflects the fundamentally different approach used by the V-lab, where
co-movements between firms are based on equity returns and depend on a single risk factor, the
broad market equity index. Due to its use of equity returns, the SRISK only offers indirect information
about default connections. Moreover, the SRISK does not exploit the default correlations directly or
utilize the network structure as is the case with our systemic risk measures.

4.3 Systemic risk rankings of banks in August 2008

Performing the network analysis in August 2008 is interesting in its own right. Within the following
month, the US Treasury placed Fannie Mae and Freddie Mac into conservatorship, Lehman Brothers
filed for bankruptcy, Merrill Lynch was merged into Bank of America, and the Federal Reserve bailed
out AIG. These events not only shook the global financial system, but they also prompted the US
government to implement the $700-billion Troubled Asset Relief Program (TARP) shortly after. In the
following paragraphs, we will use our metrics to help reflect on some of these unusual occurrences.

Table 4 displays the global systemic importance rankings for the major banks headquartered in New
York City in August 2008. These banks, except for Lehman Brothers and Merrill Lynch, received large
government bailout funds. Under the two size-weighted centrality measures (columns 6 and 7 in Table
4), which we believe better capture the systemic risk, all of them were among the top 10% riskiest
financial institutions in the world at the time. New York Mellon was the only exception, perhaps due
to its relatively small investment banking business.

Table 4. Global systemic rankings and the total assets for New York City-based banks, August 2008

. Weighted Bank Asset
. . Connection . . N Bank
Firm Connection . Weighted Connection Size (in .
Degree Eigenvector Strength . - Size in
Name Strength Eizenvector Eigenvector Strength millions of Rankin
8 Eigenvector UsD) e
Citigroup 1138 1647 1090 1502 6 9 2,100,385 7
JPMorgan | 5gg 1601 1521 1440 63 165 1,775,670 11
Chase
Goldman 14 457 1587 1496 1549 37 92 1,088,145 22
Sachs
Morgan 1201 1322 1146 1432 14 13 1,031,228 25
Stanley
Merril 73 494 63 536 17 15 966,210 28
Lynch
Lehman 860 315 794 564 28 43 639,432 39
Brothers
Bank of
New York 1636 394 1653 737 437 433 201,225 95
Mellon

Source: CRI (National University of Singapore) and authors’ calculations.

In the case of Lehman Brothers, it was smaller than the other major investment banks measured by
total asset. However, it was more strongly connected with the rest of the global financial system (see
column 3 in Table 4), and its size-weighted rankings did not seem to justify the decision to let it go into
bankruptcy. ¥ Lehman’s collapse may have contributed to the cascading defaults of its major
counterparties later on. Indeed, our data shows that among the 50 financial institutions that had the
strongest positive partial correlations with Lehman Brothers at the time, 21 of them defaulted or were

18 This result supports earlier analysis based on pair-wise interconnectedness suggesting that Lehman Brothers
was too systemic to fail (Chan-Lau, 2009, among others).
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subsequently delisted from their stock exchanges. Among those events, five occurred within one year
of Lehman’s demise.

Figure 2 presents the seven major New York City-based banks, identified by their equity tickers, with
their associated financial communities as of August 2008. Different colors denote the geographical
domiciles of the included institutions, with some major ones identified by their equity tickers too.

We can see from the figure that each of the banks has a surrounding community, which mostly
comprises smaller banks and brokerage firms. Some of them have big counterparties, which according
to our methodology contribute to their systemic importance via feedback effects. Another distinct
feature is that the communities have very different characteristics. For instance, Morgan Stanley and
New York Mellon are mostly connected to parties domiciled in North America and Europe. Merrill
Lynch, on the other hand, has much diverse pools of counterparties around the world.*®

Figure 2. Major New York City-centered banks and their communities, August 2008

- Asia-Pacific
Developed
Economies

- Asia-Pacific
Developing
Economies
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°
® Ml L :tin America &
the Caribbean

5. Financial Networks Based on Other Correlation Measures

In the financial network literature, a variety of measures has been used to construct networks (e.g.,
Kenett et al. 2010; Demirer et al. 2015). The following two examples employ alternative measures and
data, and the resulting networks can be substantially different from those obtained by using the
forward-looking partial default correlations. Tables 5 and 6 display the global rankings for the banks
and insurers in the 2016 FSB G-SIB/G-SlI lists.

5.1 Historical PDs vs. forward-looking model PDs

The first example compares the systemic measures obtained with the 1-year PDs on a forward-looking
basis with those using the historical time series of 1-year PDs obtained from the CRI database. As

19 For a better presentation of the network figure, we keep only the edges with connection strength larger than
0.01 in the figure.
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explained earlier, the forward-looking PDs characterize one month later the potential default risk of a
firm over a 1-year horizon. Therefore, the partial correlations and the resulting network are forward-
looking in nature. In contrast, the historical PD series of a firm captures the past evolution of its default
risk over time. The partial correlation of two series reveals the co-movement of default risk averaged
over the sample period in the past and is therefore backward-looking.

To construct the backward-looking measure, we take monthly series of the CRI 1-year PDs from 1990
to 2015 to form a historical series for each financial institution in the sample. We then obtain the
partial correlations among the monthly difference of each series in the sample.

One challenge in dealing with the historical PD series is that the institutions in the sample may not
have the same or sufficient overlapping periods of observations. As a consequence, it is impossible to
obtain the sample correlation matrix in a usual way, but it is a crucial input in estimating the partial
correlation matrix. Our solution is to compute the sample correlations in a pairwise fashion in order
to make use of the maximum number of observations in each series. We subsequently adjust the
resulting correlation matrix element by element to render it positive semi-definite following Qi and
Sun (2011), and then convert it to a partial correlation matrix.

Table 5 compares the systemic rankings of the forward-looking and backward-looking networks, for
the 2016 G-SIBs/G-Slls. As can be seen, the two approaches yield substantially different results for
each of the six network centrality measures. For the two size-weighted centrality measures, forward-
looking rankings raise the importance of Bank of America and Credit Suisse, among others, relative to
their backward-looking counterparts. In contrast, for financial institutions including Industrial and
Commercial Bank of China and Barclays, their forward-looking systemic importance at the time is
below their average level over time. This comparison shows that it can be quite misleading if one uses
‘backward-looking’ PDs to imply the financial institutions’ would-be connectedness in the future.

5.2 Equity returns vs. PDs

This example compares the financial network generated with equity returns against that with
historical PD series. We collect from Bloomberg historical daily equity returns for the period between
1990 and December 2015 for all financial institutions in our sample, wherever available. As the
institutions in our sample are listed in many exchanges across the world, we denominate the returns
in US dollar to ensure comparability. We also collect from the CRI database the historical 1-year PD
series on a daily frequency because daily equity returns are used. This example highlights how
different types of risk measures can generate substantially different partial correlation networks.
Table 6 reports the rankings for the six systemic importance indictors for the 2016 G-SIBs/G-SlIs.

It is apparent that rankings can differ markedly depending on whether equity returns or historical PDs
are used. This is the case for the degree and connection strength centralities. Once node
characteristics are accounted for, i.e., the institutions’ sizes, the rankings under different measures
start to move closer. For example, the PD-based size-weighted connection strength eigenvector
centrality has a Spearman coefficient of 0.56 with that based on equity returns. This reflects in a way
the important role that node characteristics play in determining a financial institution’s importance in
the global network.
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Table 5. Global rankings under the six network centrality measures: using historical PDs vs. forward-looking PDs

Firm Name (1)_F (1)_H (2)_F (2)_H (3)_F (3)_H (4)_F (4)_H (5)_F (5)_H (6)_F (6)_H
Citigroup Inc 1594 815 1655 551 1718 527 1758 1032 5 75 10 133
JPMorgan Chase & Co 1119 1186 1167 1592 1167 1545 1401 1706 3 84 6 318
Bank of America Corp 1230 815 1371 1314 1323 516 1352 1209 1 97 8 157
BNP Paribas SA 1038 676 926 1402 1060 579 1063 1288 12 56 2 79
Deutsche Bank AG 978 141 1492 322 948 218 1131 993 4 4 7 6
HSBC Holdings PLC 1171 71 594 633 1278 47 682 716 52 240 222 189
Barclays PLC 756 547 1044 731 818 518 796 1053 106 10 247 10
Credit Suisse Group AG 1038 1870 525 1892 883 1737 505 1730 20 224 13 256
Goldman Sachs Group Inc 1075 1725 1353 1879 1435 1619 1644 1825 19 500 49 586
Industrial &C%‘i’r:‘;”cte;ia' Bank of 1053 1779 784 1824 897 1508 911 1286 14 3 98 5
Mitsubishi UFJ Financial Group Inc 1564 141 813 771 1548 87 559 1121 16 263 66 367
Wells Fargo & Co 1685 1570 1348 1622 1675 956 1296 1415 7 457 25 414
Agricultural Bank of China Ltd 1134 1186 1296 421 1088 1359 1235 131 10 189 62 123
Bank of China Ltd 15 1385 13 1000 12 961 14 823 9 1 79 1
Bank of New York Mellon Corp 1635 1570 1447 832 1708 1652 1680 1576 43 74 26 59
China Construction Bank Corp 1492 937 1421 656 1487 429 1301 872 2 2 9 2
Groupe BPCE* 921 1478 199 1572 922 1377 292 1704 33 23 4 36
Credit Agricole SA 965 1 1450 336 1105 18 1532 592 8 88 3 132
ING Groep NV 1206 71 1776 653 1234 306 1696 1278 18 19 15 24
Mizuho Financial Group Inc 1302 547 1481 434 1162 310 1115 994 15 257 36 341
Morgan Stanley 1714 1478 1889 1725 1813 553 1901 1319 23 540 58 452
Nordea Bank AB 343 1069 363 808 378 920 300 1334 35 14 128 14
Royal Bank of Scotland Group PLC 196 676 670 430 172 441 492 902 24 260 59 186
Banco Santander SA 1548 1870 833 1450 1458 1856 578 1598 30 89 60 100
Societe Generale SA 733 1652 1436 1189 1029 1747 1549 1821 6 37 1 52
Standard Chartered PLC 373 1824 43 1587 372 1805 43 1850 28 22 68 35
State Street Corp 1685 141 732 445 1617 200 916 897 420 231 1018 244
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Sumitomo Mitsui Financial Group

Inc 1415 676 1121 527 1382 296 983 1029 34 244 46 327

UBS Group AG 1785 187 401 628 1649 61 498 1069 149 120 37 163

UniCredit SpA 1614 1824 1559 1326 1506 1909 1236 1868 27 70 35 101

Aegon NV 782 335 526 576 866 501 646 1303 69 71 104 91

Allianz SE 390 1779 565 481 515 1620 432 1428 41 134 18 145

American International Group Inc 1483 547 1620 183 1556 388 1615 689 37 268 56 376

Aviva PLC 554 37 1091 510 459 82 889 770 31 129 19 130

AXA SA 1063 937 933 563 1114 1005 1161 1368 83 35 224 39

MetLife Inc 1606 52 1417 372 1732 128 1604 1042 21 57 17 127

Ping An Insurance Group Co of 1350 187 1134 723 1349 156 947 1047 25 9 23 8

China Ltd

Prudential Financial Inc 1728 1186 906 429 1689 608 1320 1021 13 144 50 278

Prudential PLC 222 335 569 305 230 533 476 1322 76 65 21 80

Source: CRI (National University of Singapore) and authors’ calculations.

Notes: 1. The column numbers are: (1) degree centrality, (2) connection strength centrality, (3) eigenvector centrality, (4) eigenvector connection strength centrality, (5) TA-weighted eigenvector centrality, (6) TA-

weighted eigenvector connection strength centrality.
2. ‘_H’ means results derived from the historical PD series. ‘_F’ denotes results derived from the forward-looking PDs.

3. Due to the data requirements on the historical PD series, this comparative analysis is conducted on a smaller sample of 1,948 financial institutions as opposed to the 2,029-firm sample used in section 4.2. The global
rankings based on the forward-looking PDs are computed from the full sample but rescaled to the 1,948-firm sample to allow for meaningful comparison.

* Groupe BPCE is not a listed bank. We use Natixis SA, the major listed entity in this banking group, to proxy for its systemic ranking.
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Table 6. Global rankings of the six network centrality measures: using historical daily PD changes vs. historical daily equity returns

Firm Name (1)_PD (1)_EgRtn (2)_pPD (2)_EqgRtn (3)_PD (3)_EgRtn (4)_pPD (4)_EqgRtn (5)_PD (5)_EqgRtn (6)_PD (6)_EqRtn

Citigroup Inc 40 924 109 420 64 983 365 612 8 14 15 50
JPMorgan Chase & Co 1063 1102 1122 794 1027 1315 1266 1106 21 21 62 58
Bank of America Corp 369 1265 209 586 244 1189 334 854 15 24 18 48

BNP Paribas SA 932 1581 890 1002 588 1496 949 858 11 2 28 63

Deutsche Bank AG 216 733 386 431 180 847 592 735 4 4 12 104

HSBC Holdings PLC 24 1075 132 609 88 1256 543 923 19 1 44 62

Barclays PLC 163 766 65 291 104 790 299 581 24 3 35 103

Credit Suisse Group AG 1659 848 1717 587 1466 860 1439 716 60 13 116 151
Goldman Sachs Group Inc 623 1298 675 333 434 1286 973 655 22 28 54 77
Industrial &Ci‘i’:;"xd“ia' Bank of 1375 883 1345 577 1205 962 812 493 1 25 2 6
Mitsubishi UFJ Financial Group Inc 553 1325 599 680 345 1416 765 1132 54 81 39 41
Wells Fargo & Co 577 924 812 699 401 1025 676 1034 37 23 32 29
Agricultural Bank of China Ltd 623 645 281 312 803 628 82 221 5 40 6 4
Bank of China Ltd 779 699 667 268 584 900 678 418 3 31 1 1

Bank of New York Mellon Corp 779 1047 840 703 457 1193 1028 1051 367 63 275 132
China Construction Bank Corp 153 670 248 246 221 1037 611 443 2 26 5 2

Groupe BPCE* 1188 766 1344 928 776 549 1264 604 56 50 75 172

Credit Agricole SA 446 670 393 140 403 595 591 334 9 5 20 70

ING Groep NV 330 790 478 448 192 733 715 543 25 12 82 161

Mizuho Financial Group Inc 1094 1520 869 690 703 1561 1010 1300 39 68 37 22
Morgan Stanley 104 645 98 250 85 689 362 447 63 33 100 30

Nordea Bank AB 577 967 541 429 378 1051 831 887 27 10 48 169

Royal Bank of Scotland Group PLC 153 817 44 433 98 735 289 579 13 7 58 141

Banco Santander SA 1599 1491 1270 742 1561 1518 1560 964 147 6 180 119
Societe Generale SA 1636 1178 1269 743 1603 1032 1577 658 45 8 68 43
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Standard Chartered PLC 1599 612 1755 774 1160 551 1539 766 51 19 114 68

State Street Corp 76 1127 91 833 52 1111 280 1016 36 117 30 173

Sumitomo Mits;‘r::i“a”da' Group 483 1298 510 565 270 1306 778 171 49 35 33 34

UBS Group AG 605 574 455 505 361 547 692 564 18 18 41 159

UniCredit SpA 1722 1102 1312 1040 1720 911 1664 614 109 17 175 177

Aegon NV 185 550 399 415 203 527 752 531 28 61 2 9%

Allianz SE 957 1127 609 472 1013 1158 1157 909 29 29 40 206

American International Group Inc 216 313 288 185 124 342 629 411 16 51 21 16

Aviva PLC 421 1021 465 475 261 1010 613 748 20 22 53 255

AXA SA 1036 1047 593 664 1022 1129 1158 856 46 15 55 112

MetLife Inc 330 522 381 292 188 655 537 554 44 32 66 142

Ping An Insurance Group Co of 685 817 622 344 543 1033 954 537 7 53 8 7

China Ltd

Prudential Financial Inc 132 337 159 98 9% 473 371 386 42 69 42 109

Prudential PLC 354 967 404 529 211 930 638 802 77 il 112 167

Source: CRI (National University of Singapore) and authors’ calculations.

Notes: 1. The column numbers are: (1) degree centrality, (2) connection strength centrality, (3) eigenvector centrality, (4) eigenvector connection strength centrality, (5) TA-weighted eigenvector centrality, (6) TA-

weighted eigenvector connection strength centrality.

2.‘_PD’ means results derived from the historical daily PD series. ‘_EgRtn’ denotes results derived from the series of the historical daily equity returns.

3. Due to data availability, this comparative analysis is based on 1,860 banks and insurers as opposed to the 2,029-firm sample used in section 4.2.
* Groupe BPCE is not a listed bank. We use Natixis SA, the major listed entity in this banking group, to proxy for its systemic ranking.
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5. Conclusion

The 2008 global financial crisis has highlighted the need to identify systemic risk in the global financial
network and to design policy measures capable of containing potential system-wide distress. In this
paper, we devise a new methodology for constructing a global financial network and ranking the
systemic importance of the financial institutions in the network. We implement the methodology on
a sample of over 2,000 public financial institutions which literally covers all exchange-listed banks and
insurers worldwide.

Methodology-wise, we use the default correlation model of Duan and Miao (2016) to generate by
simulation the financial institutions’ forward-looking PD correlation matrix over a future time period.
To disentangle the direct linkages between any pair from the effects of third parties in the global
network, we apply the CONCORD algorithm of Khare et al. (2015) to transform the forward-looking
PD correlation matrix into a forward-looking partial correlation matrix. We then apply the concept of
network centrality to create six measures of systemic importance. Apart from the simple
connectedness indicators, we use eigenvector centrality measures to capture the importance of a
financial institution based on its connections and how its connected parties are further connected.
Two of the measures use both the node (institution’s asset size) and edge characteristics to construct
the systemic importance. To graphically present the global financial network, we use the tool Gephie
to obtain institution/group centric communities that are typically overlapping.

With this methodology, we analyze the financial networks at the height of the global financial crisis in
2008 as well at the end of 2015 when the crisis has subsided. Our analysis suggests that Lehman
Brothers was as systemically important as many others that received the government bailout. We also
show that our rankings are substantially different from the alternatives, such as the FSB G-SIBs/G-Sl|s
and SRISK. Among our systemic risk measures, the ones factoring in both edge (partial default
correlation) and node characteristic (firm size) are closer to the FSB rankings.

References

1. Acharya, V., Engle, R. & Richardson, M., 2012, "Capital Shortfall: A New Approach to Ranking and
Regulating Systemic Risks," American Economic Review, Papers and Proceedings of the One
Hundred Twenty Fourth Annual Meeting of the American Economic Association, 102(3), pp. 59-
64.

2. Adrian, T. and Brunnermeier, M.K., 2016, "CoVar," American Economic Review, 106(7), pp. 1705-
1741.

3. Bailey, N., Kapetanios, G., and Pesaran, M., 2015a, "Exponent of Cross-Sectional Dependence:
Estimation and Inference," Journal of Applied Econometrics, forthcoming.

4. Bailey, N., Holly, S., and Pesaran, M., 2015b, "A Two Stage Approach to Spatial-Temporal Analysis
with Strong and Weak Cross-Sectional Dependence," Journal of Applied Econometrics,
forthcoming.

5. Barigozzi, M. and Brownlees, C., 2016, "Nets: Network Estimation for Time Series," SSRN.

6. Basel Committee on Banking Supervision, Nov. 2014, "The G-SIB assessment methodology-score
calculation."

7. Basel Committee on Banking Supervision, 2013, "Global Systemically Important Banks: Updated
Assessment Methodology and the Higher Loss Absorbency Requirement (Basel)."

8. Billio, M., Getmansky, M., Gray, D., Lo, A., Merton, R.C., and Pelizzon, L., 2013, "Sovereign, Bank,
and Insurance Credit Spreads Connectedness and System Networks," mimeo (Massachusetts
Institute of Technology).

23



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

Billio, M., Getmansky, M., Lo, A., and Pelizzon, L., 2012, "Econometric Measures of Connectedness
and Systemic Risk in the Finance and Insurance Sectors," Journal of Financial Economics, 104, pp.
535-559.

Brownlees, C.T., and Engle, R.F., 2017, "SRISK: A Conditional Capital Shortfall Measures of
Systemic Risk," Review of Financial Studies, 30(1), pp 48-79.

Canova, F., and Ciccarelli, M., 2013, "Panel Vector Autoregressive Models: a Survey," Working
Paper Series 1507 (European Central Bank).

Chan-Lau, J.A., 2013, Systemic Risk Assessment and Oversight, Risk Books.

Chan-Lau, J.A., 2009, "Default Risk Codependence in the Global Financial System: Was the Bear
Stearns Bailout Justified?" in G. Gregoriou, editor, The Banking Crisis Handbook (McGraw Hill).
Chudik, A., Pesaran, M., and Tosetti, E., 2011, "Weak and Strong Cross Section Dependence and
Estimation of Large Panels," Econometrics Journal, 14(1), pp. C45-C90.

Craig, B., and Saldias, M., 2016, "Spatial Dependence and Data-Driven Networks of International
Banks," mimeo, Federal Reserve Bank of Cleveland and International Monetary Fund.

Demekas, D., Chan-Lau, J.A., Rendak, N., Ohnsorghe, F., Youssef, K., Caceres, C. and Tintchev, K.,
2013, "Mandatory Financial Stability Assessments under the Financial Sector Assessment
Program: Update," International Monetary Fund (Washington, D.C.).

Demirer, M., Diebold, F.X., Liu, L. and Yilmaz, K., 2015, "Estimating Global Bank Network
Connectedness," Working paper.

Diebold, F.X., and Yilmaz, K., 2014, "On the Network Topology of Variance Decompositions:
Measuring the Connectedness of Financial Firms," Journal of Econometrics, 182(1), pp. 119-134.
Duan, J.-C. and Miao, W., 2016, "Default Correlations and Large-Portfolio Credit Analysis," Journal
of Business and Economic Statistics, 34(4), pp. 536-546.

Duan, J.-C. and Simonato, J.-G., 1998, “Empirical Martingale Simulation for Asset Prices,”
Management Science, 44(9), pp. 1218-1233.

Duan, J.-C., Sun, J. and Wang, T., 2012, "Multiperiod Corporate Default Prediction: A Forward
Intensity Approach," Journal of Econometrics, 170(1), pp. 191-209.

Duan, J.-C. and Zhang, C., 2013, "Cascading Defaults and Systemic Risk of a Banking Network,"
National University of Singapore working paper.

Fan, J., 1997, "Comments on "Wavelets in Statistics: A Review' by A. Antoniadis," Journal of the
Italian Statistical Society, 6(2), pp. 131-138.

Ferson, W. E., 2003, "Tests of Multifactor Pricing Models, Volatility Bounds, and Portfolio
Performance," Chapter 12 in G. Constantinides, M. Harris, and R. Stulz, editors, Handbook of the
Economics of Finance, 1A, pp. 743 - 802.

Fiedler, M., 1973, "Algebraic Connectivity of Graphs," Czechoslovak Mathematical Journal, 23(2),
pp. 298-305.

Financial Stability Board, 2014, "2014 Update of List of Global Systemically Important Banks (G-
SIBs) (Basel)."

Financial Stability Board, 2016, "2016 list of global systemically important banks (G-SIBs)".
Financial Stability Board, 2016, "2016 list of global systemically important insurers (G-Slis)".
Girvan, M. and Newman, M. E. J., 2002, "Community Structure in Social and Biological Networks,"
Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821-
7826.

Huang, X., Zhou, H. and Zhu, H., 2009, "A Framework for Assessing the Systemic Risk of Major
Financial Institutions," Journal of Banking & Finance, 33, pp. 2036-2049.

International Association of Insurance Supervisors, 2016, "Global Systemically Important Insurers:
Updated Assessment Methodology".

International Monetary Fund, 2009, Global Financial Stability Report (April).

Jacomy, M., Venturini, T., Heymann, S. and Bastian, M., 2014, "ForceAtlas2, A Continuous Graph
Layout Algorithm for Handy Network Visualization Designed for the Gephi Software," PLOS One.

24



34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

50.

51.

Kenett, Dror Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R.N. and Ben-Jacob, E.,
2010, "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the
Stock Market," PLOS One.

Kernighan, B. W. and Lin, S., 1970, "An Efficient Heuristic Procedure for Partitioning Graphs," Bell
System Technical Journal, 49(2), pp. 291-307.

Khare, K., Oh, S.-Y. and Rajaratnam, B., 2015, "A Convex Pseudo-likelihood Framework for High
Dimensional Partial Correlation Estimation with Convergence Guarantees," Journal of the Royal
Statistical Society: Series B (Statistical Methodology), pp. 803-825.

Koop, G., Pesaran, M., and Potter, S., 1996, "Impulse Response Analysis in Nonlinear Multivariate
Models," Journal of Econometrics, 74, pp. 119 - 147.

Lanne, M., and Nyberg, H., 2016, "Generalized Forecast Error Variance Decomposition for Linear
and Nonlinear Multivariate Models," forthcoming in Oxford Bulletin of Economics and Statistics.

Mantegna, R. N., 1999, "Hierarchical Structure in Financial Markets," European Physical Journal B
- Condensed Matter and Complex Systems, 1, pp. 193 - 197.

Oh, S.-Y., Dalal, O., Khare, K. and Rajaratnam, B., 2014, "Optimization Methods for Sparse Pseudo-
likelihood Graphical Model Selection," Appeared in conference proceedings for 'Neural
Information Processing System 2014'.

Pothen, A., Simon, H. D., and Liou K-P., 1990, "Partitioning Sparse Matrices with Eigenvectors of
Graphs," Siam Journal on Matrix Analysis and Applications, 11(3), pp. 430-452.

Palla, G., Derenyi, I., Farkas, I. and Vicsek, T., 2005, "Uncovering the Overlapping Community
Structure of Complex Networks in Nature and Society," Nature, 435, pp. 814-818.

Patro, D. K., Qi, M. and Sun, X., 2013, "A Simple Indicator of Systemic Risk," Journal of Financial
Stability, pp. 105-116.

Peng, J., Wang, P., Zhou, N. and Zhu, J., 2009, "Partial Correlation Estimation by Joint Sparse
Regression Models," Journal of the American Statistical Association, 104(486).

Pesaran, H., and Shin, Y., 1998, "Generalized Impulse Response Analysis in Linear Multivariate
Models," Economics Letters, 58, pp. 17 - 29.

Qi, H. and Sun, D., 2011, "An Augmented Lagrangian Dual Approach for the H-weighted Nearest
Correlation Matrix Problem," IMA Journal of Numerical Analysis, 31, pp. 491-511.

RMI-CRI, 2017, "NUS-RMI Credit Research Initiative Technical Report Version: 2017 Update 1,"
accessible via http://d.rmicri.org/static/pdf/2017updatel.pdf.

Scott, J., 2000, Social Network Analysis: A Handbook, 2nd edition, Thousand Oaks, CA: Sage
Publications.

Tumminello, M., Lillo, F. and Mantegna, R., 2010, "Correlation, Hierarchies, and Networks in
Financial Markets," Journal of Economic Behavior & Organization, pp. 40-58.

Xie, J., S. Kelley, and B.K. Szymanski, 2014, "Overlapping Community Detection in Network: the
State of the Art and Comparative Study," ACM Computing Surveys, 45, No. 4.

Zou, H., 2006, "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical
Association, 101(476), pp. 1418-1429.

25



